FEEDBACK TUTORIAL LETTER

2ND SEMESTER 2020

TEST MEMOS

Basic Business Statistics 1B
BBS112S
Q1
1.1 A ✓
1.2 A ✓
1.3 C ✓
1.4 C ✓
1.5 D ✓

Q2
2.1 Systematic Sample
2.2 Simple Random Sample
2.3 Cluster Sample
2.4 Stratified Sample
3.1 \(X \sim N(\mu = 100, \sigma^2 = 12^2) \)
\(n = 50 \)

3.1.1 \(P(95 \leq \bar{X} \leq 100) \)

\[P \left(\frac{95 - 100}{12 \sqrt{50}} \leq Z \leq \frac{100 - 100}{12 \sqrt{50}} \right) \]

\[= P(-2.95 \leq Z \leq 0) \]

\[= 0.5000 - 0.0016 \]

\[= 0.4984 \checkmark \]

3.2 \(\sigma = 11 \)
\(n = 25 \)
\(\bar{X} = 95 \)

3.2.1 \(\left[\bar{X} \pm \frac{Z_{\alpha/2}}{\sqrt{n}} \right] \checkmark \)

\[Z_{\alpha/2} = Z_{0.025} = 1.96 \]
We are 95% confident that the true population mean of \(X \) lies between 90.688 g and 99.312 g.

4.1

\[\overline{X} = 92.7 \text{ grams} \]

4.2

\[
\left[\overline{X} \pm t_{0.025, df=n-1} \left(\frac{S}{\sqrt{n}} \right) \right]
\]

\[S = 47.640 \]

\[n = 20 \]

\[d = 0.1 \]

\[t_{0.05, df=19} = 2.093 \]

\[4.729133 \]
\[921 \pm 1.729133 \left(\frac{47.6401}{120} \right) \]

\[= \left[902.5802, 939.4198 \right] \text{ grams} \]

0.85

14 will not make it
186 will make it

\[\hat{p} = \left(\frac{x}{n} \right) = \left(\frac{186}{200} \right) \]

\[= 0.93 \]

\[= 93\% \]

\[2 \left[\hat{p} \pm z \frac{\sqrt{\hat{p}(1-\hat{p})}}{n} \right] \]

\[\hat{p} = 0.02 \]

Also consider 2.32 or 2.33

\[z_{0.01} = \frac{2.32 + 2.33}{2} \]
\[
\left[0.93 \pm 2.325 \left(\frac{0.93(1-0.93)}{200} \right) \right]
\]

\[
\left[0.93 \pm 2.325 \left(0.0180 \right) \right]
\]

\[
\left[0.8882, 0.9719 \right]
\]

We are 98\% confident that the true proportion of the people that will make their payments on time lies between 88.82\% and 97.19\%.
BBS1B Test 2 Memo

QUESTION 1

1.1 B ✓
1.2 A ✓
1.3 A ✓
1.4 D ✓
1.5 B ✓
1.6 B ✓
1.7 C ✓
1.8 B ✓
1.9 B ✓
1.10 B ✓

QUESTION 2

2.1 \(n = 10, \Sigma x = 65 + 65 + 70 + 67 + 66 + 63 + 63 + 68 + 72 + 71 = 670 \)

\[\Sigma x^2 = 44982; \bar{x} = \frac{\Sigma x}{n} = \frac{670}{10} = 67 \]

\[s^2 = 10.2222 \]

\[s = \sqrt{10.2222} = 3.1972 \]

10

\(H_0: \mu = 65 \)

\(H_a: \mu \neq 65 \)

\[t_{stat} = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{67 - 65}{3.1972/\sqrt{10}} = \frac{2}{1.0110434414} = 1.978154423 \approx 1.9782 \]

\(\checkmark \)

Reject \(H_0 \) if \(t_{stat} > 2.262157 \) or \(t_{stat} < -2.262157 \).

We fail to reject \(H_0 \), since \(t_{stat} = 1.9782 < 2.262157 \)

At 5% level of significance, we conclude that Mr Mumbuu’s belief is justified.

\(\checkmark \)

Is not justified and the students' belief is correct.
2.2

\[n = 100, \quad \pi = 9.5(0.095), \quad p = \frac{7}{100} = 0.07 \sqrt{\checkmark} \]

\(H_0: \pi \geq 9.5 \) (0.095) \(\sqrt{\checkmark} \)

\(H_a: \pi < 9.5 \) (0.095) \(\sqrt{\checkmark} \)

\[z_{stat} = \frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} = \frac{0.07-0.095}{\sqrt{\frac{0.095(1-0.095)}{100}}} = \frac{-0.025}{0.0029321493} = -0.85261 \sqrt{\checkmark} \]

Reject \(H_0 \) if \(z_{stat} < -2.325 \sqrt{\checkmark} \)

We fail to reject \(H_0 \) since \(z_{stat} = -0.85261 > -2.325 \)

At 1% level of significance we conclude that the true proportion of adults who suffer from depression is not lower than the percent in the general adult American population.

Question 3 [13 marks]

3.1

\(H_0: \) Political affiliation and opinion on a tax reform bill are independent (no association) \(\sqrt{\checkmark} \)

\(H_a: \) Political affiliation and opinion on the tax reform bill are dependent (there is an \(\sqrt{\checkmark} \) association).

\[\chi^2_{stat} = \sum \frac{(f_0 - f_e)^2}{f_e} \]

\[f_e = \frac{row\ total \times column\ total}{grand\ total} \]

<table>
<thead>
<tr>
<th>(f_0)</th>
<th>(f_e = RT \times CT/GT)</th>
<th>(\frac{(f_0 - f_e)^2}{f_e})</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>115.14</td>
<td>4.538645128 (\sqrt{\checkmark})</td>
</tr>
<tr>
<td>83</td>
<td>85.5</td>
<td>0.0730994152 (\sqrt{\checkmark})</td>
</tr>
<tr>
<td>64</td>
<td>84.36</td>
<td>4.913816975 (\sqrt{\checkmark})</td>
</tr>
<tr>
<td>64</td>
<td>86.86</td>
<td>6.016343541 (\sqrt{\checkmark})</td>
</tr>
<tr>
<td>67</td>
<td>64.5</td>
<td>0.09689922481 (\sqrt{\checkmark})</td>
</tr>
<tr>
<td>84</td>
<td>63.64</td>
<td>6.513664362 (\sqrt{\checkmark})</td>
</tr>
</tbody>
</table>

\[\chi^2 = 22.15246865 \sqrt{\checkmark} \]

Reject \(H_0 \) if \(\chi^2_{stat} > 5.991465 \sqrt{\checkmark} \)

We reject \(H_0 \) since \(\chi^2_{stat} = 22.15246865 > 5.991465 \)

At 5% level of significance, we conclude that political affiliation and opinion on a tax reform bill are dependent.
Faculty Name: Health and Applied Sciences
Name of Department: Mathematics and Statistics

QUALIFICATION(S):
- B. Business Admin
- B. Marketing
- B. Human Resource Management
- B. Public Management
- B. Logistics and Supply Chain Management

COURSE NAME: Basic Business Statistics 1B
COURSE CODE: BBS112S

DATE: 11 December 2020
TIME: 1 Hour 30 minutes
MARKS: 50

EXAMINER(s): Mr. E. Mwahi, Mr. A. Roux, Mr. R. Mumbuu, Mr. G. Tapedzesha, Ms L. Khoa, Mr. N. Ndadi, Ms. A. Sakaria

This memorandum consists of 6 pages excluding this front page
Question 1 [20]

1.1 D ✓ ✓
1.2 B ✓ ✓
1.3 D ✓ ✓
1.4 B ✓ ✓
1.5 C ✓ ✓
1.6 D ✓ ✓
1.7 B ✓ ✓
1.8 C ✓ ✓
1.9 B ✓ ✓
1.10 D ✓ ✓

Question 2 [30]

2.1

\[\Sigma x = 21 \cdot 18 + 19 + 16 + 18 \cdot 22 + 19 + 24 + 14 + 18 + 15 = 228 \]

\[\Sigma x^2 = 21^2 + 18^2 + 19^2 \ldots \ldots + 15^2 \]

\[= 4448 \]

Sample variance \(S^2 = \frac{\Sigma x^2 \cdot (\bar{x})^2}{n-1} \)

\[S^2 = \frac{4448 \cdot (228)^2}{12} \]

\[S^2 = \frac{116}{11} \]

\[S^2 = 10.54545 \]

\(S^2 \approx 10.545 \)

\[S = \sqrt{10.545} \]

\[= 3.247376564 \]

\[= 3.247 \]

2.1.1

\[\bar{x} = \frac{\Sigma x}{n} \]

\[= \frac{228}{12} \]

\[= 19 \]
2.1.2

n = 12

σ = ?

Since sigma(σ) is unknown and

n < 30 (less than 30) we use a t-distribution

\[t_{0.05 \over 2, n-1} = t_{0.025, 11} = 2.20099 \]

\[\bar{x} - t_{0.05 \over 2, n-1} \times {s \over \sqrt{n}} \leq \mu \leq \bar{x} + t_{0.05 \over 2, n-1} \times {s \over \sqrt{n}} \]

\[19 - 2.20099 \times \frac{3.247}{\sqrt{12}} \leq \mu \leq 19 + 2.20099 \times \frac{3.247}{\sqrt{12}} \]

16.93695009 ≤ \mu ≤ 21.06304991

16.937 ≤ \mu ≤ 21.063

2.1.3 Step 1: Formulate the hypothesis

Ho: \(\mu \geq 20 \)

Ha: \(\mu < 20 \) (claim at Ha)

Step 2: Compute the test statistic

\[t_{stat} = \frac{\bar{x} - \mu}{s/\sqrt{n}} \]

\[= \frac{19 - 20}{3.247 / \sqrt{12}} \]

\[\approx -1.067 \]

Step 3: Formulate the decision rule

\(\alpha = 0.05, t = -1.795885 \)

Rejection area

Area of acceptance

-1.795885 0
Rule: Reject Ho if \(t_{\text{stat}} < -1.795885 \)

Step: Decision

We fail to reject Ho/ we do not reject Ho\(_{0}\) since \(t_{\text{stat}} = -1.067 > -1.795885 \)

Step 5: Conclusion

At 5% level of significance we conclude that there is no enough evidence to support the claim that the mean fat content of beef burger is less than 20% (the claim is not valid).

2.2

Step1: State the Hypotheses

\(H_0 \): There is no relationship between gender and favourite colour at the elementary school

\(H_a \): There is a relationship between gender and favourite colour at the elementary school

NB: Independence (no association) should be considered for \(H_0 \) and vice versa for \(H_a \)

Step 2: Compute the test statistic

\[
\chi^2_{\text{stat}} = \sum \frac{(f_o - f_e)^2}{f_e}
\]

<table>
<thead>
<tr>
<th>(f_o)</th>
<th>(fe = \frac{\text{row} \times \text{column total}}{\text{grand total}})</th>
<th>(\frac{(f_o - f_e)^2}{f_e})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(\frac{270 \times 120}{500} = 64.8)</td>
<td>19.12099</td>
</tr>
<tr>
<td>150</td>
<td>(\frac{270 \times 180}{500} = 97.2)</td>
<td>28.68148</td>
</tr>
<tr>
<td>20</td>
<td>(\frac{270 \times 200}{500} = 108)</td>
<td>71.70371</td>
</tr>
<tr>
<td>20</td>
<td>(\frac{230 \times 120}{500} = 55.2)</td>
<td>22.44638</td>
</tr>
<tr>
<td>30</td>
<td>(\frac{230 \times 180}{500} = 82.8)</td>
<td>33.66957</td>
</tr>
<tr>
<td>180</td>
<td>(\frac{230 \times 200}{500} = 92)</td>
<td>84.17391</td>
</tr>
<tr>
<td>(\sum f_o = 500)</td>
<td>(\sum f_o = 500)</td>
<td>(\chi^2 = 259.796)</td>
</tr>
</tbody>
</table>

NB: Award full marks (5 marks) for an alternative method which leads to \(\chi^2 = 259.796 \)

Step3: Formulate the decision rule

\[
\alpha = 5\% = 0.05
\]

\[
\chi^2_{\alpha} = (r - 1)(c - 1)
\]

\[
\chi^2 = 0.05(2-1)(3-1)
\]
Rule: Reject Ho if $\chi^2_{stat} > 5.99146$

Step 4: Decision
We reject Ho since $\chi^2_{stat}=259.796>5.99146$

Step 5: Conclusion
At 5% level of significance, we conclude that there is a relationship between gender and favourite colour at the elementary school.

2.3

<table>
<thead>
<tr>
<th>Period (Years)</th>
<th>Shipments</th>
<th>3 Point Moving Total</th>
<th>3 Point Moving Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>510.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>542.4</td>
<td>1600.5</td>
<td>533.500</td>
</tr>
<tr>
<td>2010</td>
<td>547.8</td>
<td>1653.7</td>
<td>551.233</td>
</tr>
<tr>
<td>2011</td>
<td>563.5</td>
<td>1671.5</td>
<td>557.167</td>
</tr>
<tr>
<td>2012</td>
<td>560.2</td>
<td>1701.8</td>
<td>567.267</td>
</tr>
<tr>
<td>2013</td>
<td>578.1</td>
<td>1707.5</td>
<td>569.167</td>
</tr>
<tr>
<td>2014</td>
<td>569.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>